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Abstract :  The demand of the decade is for low area, low power, and efficient arithmetic operations. The mathematical function of 

multiplication must be carried out quickly and efficiently in high-speed systems like digital signal processing, image processing, 

graphics, etc. When developing a system with complicated operations, it's crucial to take into account a number of critical factors, 

including the portability of a device, power consumption, the system's response time, and power dissipation. Modular operations 

are used in many of the algorithms used in applications like cryptography, which is the act of classifying information, changing it 

to a form that may be unintelligible, and protecting it from unauthorized persons. The length of the output in modular operat ions is 

constant, unlike other arithmetic operations. Partially produced products are generated in the first stage of multipliers, which is 

nothing more than a series of AND gates. The incomplete items are then combined to produce the complete products. Taking all of 

this into account takes time. This paper reviews the most popular and cutting-edge approaches for effective modular multiplication 

in this study, looking specifically at FPGA-based solutions while also assessing their advantages and disadvantages. 

 

IndexTerms - Modular Multiplication, Karatsuba Algorithm, Cryptosystem. 

I. INTRODUCTION 

 

The use of electronic communication is rapidly expanding, and information security concerns should follow suit [17]. Data sent 

across open computer networks need to be verified, kept private, and have its integrity guarded against tampering. Electronic 

businesses need digital valid signatures and secure payment methods to operate properly. All of these issues, as well as numerous 

more, are resolved by cryptography [22]. Providing confidentiality, a service used to keep publicly available information secret from 

everyone but those with access rights is one of cryptography's fundamental goals. There are various techniques to guarantee 

confidentiality. They range from physical defense to mathematical solutions that obfuscate the data. It employs the encryption and 

decryption techniques [17], [22], [19], and [20]. Many public-key cryptosystems, including Diffie and Hellman [28], [25], and the 

Rivest, Shamir, and Adleman encryption schemes [27], use modular exponentiation as a standard operation for scrambling. The three 

components of the RSA cryptosystem are a modulus M of around 1024 bits and two numbers, D and E, which are referred to as the 

private and public keys and meet the property TDE≡T mod M. T obeying 0≤T<M in plain text. Using the public key, messages are 

encrypted as C = TE mod M and are uniquely decrypted as T = CD mod M. Encryption and decryption are thus carried out using the 

same operation. It is decided that the modulus M will be the product of two enormous prime numbers, let's say P and Q. The encryption 

stage is normally quick since the public key E is typically tiny and only has a few bits set (i.e., bits = 1). The private key D is chosen 

so that DE = 1 mod (P-1)(Q-1) and has the same number of bits as the modulus M. Due to the difficulty of computationally discovering 

P and Q, the system is secure. It has been demonstrated that an RSA cryptosystem with a modulus of 1024 bits or higher cannot be 

cracked. Repeatedly applying modular multiplication is known as modular exponentiation. Therefore, the modular multiplication and 

exponentiation's implementation efficiency play a vital role in determining how well public key cryptosystems function. It is crucial 

to try to reduce the number of modular multiplications performed and the time required by a single modular multiplication because 

the operands (the plaintext, the cipher text, or possibly a partially ciphered text) are typically large (i.e. 1024 bits or more). This will 

improve the time requirements of the encryption/decryption operations. 

It is possible to execute modular multiplication A×B mod M in one of two ways: first multiplying, or computing P = A×B, and 

then reducing, or computing R = P mod M, or by interspersing the multiplication and reduction phases. Modular multiplication is 

implemented via many algorithms. The most well-known ones are interleaving multiplication and reduction, Barrett's [24], [23], [21], 
and Karatsuba’s [26] method for multiplying. This is how the review will be structured. 
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II. LITERATURE REVIEW 

The digital World is considered Supremacy in the expanding sector of the world which requires an outrageous amount of power 

to run it. Hence, the more the power the unbeatable it becomes. For upholding the power in digitization, the Multiplication operation 

and the Vedic approach are used. But Multiplication is considered to be complex to design and the speed of multiplication is foremost. 

Hence, to increase efficiency, decrease expenditure and lessen the delay time the simplest algorithm which is Karatsuba Algorithm 

is used. Various types of multiplications schemes are implemented based on the FPGA. So, many researchers have performed on 
different types of architecture and analyzed or study various types of topologies which are summarised below: 

 

Xinmiao Zhang, et.al. [1] suggested that a method known as the ring-learning with errors (R-LWR) could be used to create a 

variety of ciphers that are resistant to quantum computing assaults and fully homomorphic encryption, which enables computations 

to be performed on encrypted data. The modular reduction is to be incorporated into the Karatsuba polynomial multiplication using 

a novel method that is proposed in this research. The ultimate product is not subject to modular reduction; rather, it applies to goods 

from the intermediate segment. As a result, increased substructure sharing is made possible and a significant decrease in the number 

of coefficient additions is required for assembling the segment products to produce the desired outcome. The proposed method 
decreases the number of adds by 13–17% for polynomial multiplications with decomposition factors 2, 3, and 4. 

  

Ashly George, et.al. [2] used three ones of half-length operands in parallel, the Karatsuba-Ofman multiplier substitutes for 

multiplication. In many public key cryptosystems, including RSA, modular multiplication is a fundamental operation that must be 
carried out. In terms of delay, area, and power, the suggested design exhibits higher performance. 

 

Shankar R, et.al. [4] presented that Splitting the operands into two equal-length portions allows the Karatsuba algorithm to be 

started, which speeds up the multiplication of huge numbers. The carry propagation from LSB to MSB is decreased by the Vedic 

multipliers' creation of partial products and sums in a limited number of steps. The area and the latency are minimized in the suggested 

design. Finally, the outcomes of the Vedic and Karatsuba multipliers are compared. 

 

Kiran Kumar V G, et.al. [5] offered a technique for using effective arithmetic algorithms, which serve as the foundation for 

intricate activities like signal and image processing and DSP. The addition, multiplication, and modular operations are all arithmetic 

operations. Reversible gates and the Vedic approach are combined to act as multipliers and are examined. With the various multipliers 

and the modular reduction methods used here, Montgomery's modular operation is adjusted, and the effectiveness of the modification 

is tested. The algorithms' area, timing, and power usage are tallied and investigated. The design's LUTs, slice registers, and IOBs are 

tabulated. The tabulated data assist the designer in making an effective algorithm selection based on the resources available during 

design. So an algorithm may be application-specific. Xilinx 14.2's Spartan 6 family and Cadence's 45nm technology are both used to 
implement all of the algorithms. Verilog is the chosen language for hardware description. 

 

Mishal Jasmine Ferrao, et.al. [6] studied on three modular reduction techniques and one modular multiplication algorithm and its 

implementation. 

 

Kumm, M., et.al. [7] worked on expands of Karatsuba's strategy for effectively using rectangular multipliers as the foundation 

for larger multiplies. The suggested method reduces resource usage and boosts efficiency for multipliers of integers larger than 64 

bits. 

 

Pasluri Bindu Swetha, et.al. [8] proposed an exportable application-specific direction set elliptic bent cryptography processor with 

a focus on repeating marked digit depiction. To achieve high throughput augmentation, the processor uses broad pipelining algorithms 

for the Karatsuba-Ofman strategy. Using Xilinx 13.2, the proposed design of this article investigates the reasoning for size, region, 
and power usage. Vedic Sutra - Nikhilam Sutra is the task's growth. 

 

Arish, S., et.al. [9] propound a study of a highly effective run-time-configurable floating-point multiplier for matrix element 

multiplication along with an effective Strassen's algorithm for matrix multiplication. and The binary multiplier is implemented using 

a highly effective mix of the Urdhva Tiryagbhyam algorithm and the Karatsuba algorithm. By reconstructing itself while running, 

this design may efficiently change the power and delay needs in accordance with various accuracy requirements. 

 

Can Eyupoglu, et.al. [11] put forward One of the algorithms created to increase effectiveness and decrease cost in order to simplify 

multiplication is the Karatsuba algorithm. The effectiveness of the Karatsuba algorithm is examined in this study in terms of the 
number of multiplications and the overall processing time for various bit lengths. 

 

Sunil Devidas Bobade, et.al. [12] suggested an area-optimized, low-latency multiplier for use in ECC design, which performs the 

effective KOA method in a completely new way. The suggested algorithm employs a novel method of separating input operands 

according to exponent's parity, which ultimately aids in lowering the FPGA footprint and provides low latency by avoiding 

overlapping, a major consideration for any embedded system. They looked into how much space the suggested multiplier and 

cryptoprocessor occupied, and they came to the conclusion that the suggested scheme uses a lot less FPGA space than the one that 

uses a conventional KOA multiplier. 

 

Shahram Jahani, et.al. [13] provide brand-new symbols in this study that were taken from the Big-ones binary representation of 

integers. To enhance the performance of big integer multiplication and squaring in number theory-based cryptosystems, they provide 

a modified version of the traditional multiplication and squaring algorithms based on the Big-ones. The suggested squaring algorithm 

is 2 to 3.7 and 7.9 to 2.5 times faster for squaring 32-bit and 8-Kbit values, respectively, than the widely used classical and Karatsuba 

multiplication procedures. Additionally, for multiplying 32-bit and 8-Kbit values, respectively, the suggested multiplication technique 
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is 2.3 to 3.9 and 7 to 2.4 times faster. Since multiplication and squaring are the primary operations in the majority of these systems, 

the suggested technique directly benefits number theory-based cryptosystems that operate in the range of 1-Kbit to 4-Kbit integers. 

 

Shri Prakash Dwivedi, et.al. [14] presented a technique to multiply two binary values effectively and furthermore presented the 
Nikhilam method of Vedic mathematics as the basis for an integer multiplication algorithm. 

 

Gary C.T. Chow, et.al. [15] have argued that a crucial component of cryptographic algorithms is the modular multiplication of 

long numbers. Although a number of FPGA accelerators for massive modular multiplication have been developed, earlier systems 

relied on O(N2) techniques. In this study, we provide a Montgomery multiplier that uses the faster O(N(log 3/log 2) Karatsuba 

algorithm. 

 

Sameh M. Shohdy, et.al. [16] look into the implementation of an elliptic curve-based public key cryptosystem that performs better 

thanks to the effectiveness of the core Galois field arithmetic. If the binary Karatsuba multiplier is truncated at the n-bit multiplicand 

level and uses an effective classic multiplier method, it is more effective. This work can compute the GF(2191) multiplication in 
45.889 ns. 

 

N. Nedjah, et.al. [18] suggested to implement software and hardware efficiently. Nevertheless, the findings are dispersed 

throughout the literature. In this work, they reviewed the most popular and up-to-date techniques for effective modular multiplication, 
looking into and analyzing their pros and cons. They give a suitable hardware implementation for each of the methods. 

 

Bewick, G.W., et.al. [23] proposed a thesis to find the quickest technique to implement binary multiplication. The multiplication 

method of Booth has been extended to represent products in a partially redundant form (redundant Booth). In terms of layout space, 
power, and delay, conventional Booth encoded multipliers outperform other techniques. 

 

Barrett, P., et.al. [24] look into a description of the procedures used at Oxford University to put "off-the-shelf" digital signal 

processing devices to use in a high-speed implementation of the RSA encryption method. On a first-generation DSP, encrypting took 
an average amount of time (for 512-bit exponent and modulus). 

 

ElGamal, T., et.al. [25] studied an expansion of the Diffie-Hellman key distribution mechanism to create a public key 

cryptosystem. 

 

Rivest, R., et.al. [27] put forward an approach to disclosing an encryption key in public that does not also reveal the associated 

decryption key. This has two significant effects: 1) The communication can only be decoded by him because only he is aware of both 

the encryption and decryption keys. 2) A signer cannot later contest the authenticity of his signature, and signatures cannot be falsified. 
The difficulty of factoring the divisor n contributes to the system's security. 

 

W. Diffie, et.al. [28] advanced one of the most crucial areas of computer science which is cryptography, and new types of 

cryptographic systems are required as a result of applications that reduce the requirement for safe key distribution methods. This 

paper explains how theories of communication and computation are starting to offer the means to resolve long-standing cryptography 

issues. 

III. MODULAR ARITHMETIC 

An integer-based arithmetic system that takes the remainder into account is called modular arithmetic. In modular arithmetic, 

numbers "wrap around" to leave a remainder when they reach a predetermined fixed amount (the modulus). As seen in Wilson's 

theorem, Lucas' theorem, and Hensel's lemma, modular arithmetic is frequently connected to prime numbers and is frequently used 
in computer algebra, computer science, and cryptography. 

 

With a 12-hour clock, modular arithmetic can be used in an intuitive way. If the time presently is 10:00, the clock will display 

3:00 rather than 15:00 in 5 hours. 15 minus 3, with a modulus of 12, equals 3. 

IV. INTRODUCTION TO MODULAR MATH 

The equation that results from dividing two integers is as follows: 

a/b = q reminder r 

The dividend is a. 

b is the factor. 

The quotient is q. 

r is the remainder. 

Sometimes, when dividing a by b, we are simply concerned with the leftover. 

The modulo operator is an operator that can be used in certain situations (abbreviated as mod). 

The identical a, b, q, and r as before would have led to - r = a mod b 

 

This might be expressed as r = a modulo b. where the modulus b is referred to. 

Eg 14/5 = 2 reminder 4     i.e. 14 mod 5 = 4. 

. 
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Multiplication Properties  

Numerous branches of mathematics use modular multiplication, which has a wide range of applications in areas including 
computer science, computer algebra, and cryptography. 

 

Modular arithmetic's multiplication properties 

a. If A . B = C, then A (mod n) . B (mod n) = C (mod n). 

b. If A ≡ B (mod n), then kA ≡ kB (mod n) any k-th integer. 

c. If A ≡ B (mod n) and C ≡ D (mod n), then AC ≡ BD (mod n). 

 

V. SUMMARY 

We summarized some methodologies below: 

Table 1 Summary 

Sr.

No. 
Summary about Articles 

 Author Name Methodology Finding 

1 
Xinmiao Zhang, 

et.al. [1] 

In this study, a novel approach is put forth for 

incorporating modular reduction into the 

multiplication of Karatsuba polynomials. 

Instead of the final product, the modular 

reduction is used on items from the 

intermediate segment. 

Integrates the Modular 

Reduction into the Karatsuba 

Multiplication. 

2 
Kiran Kumar V 

G, et.al. [5] 

Reversible gates and Vedic approach are 

combined to act as multipliers and are 

examined. With the various multipliers and 

the modular reduction methods used here, 

Montgomery's modular operation is adjusted, 

and the effectiveness of the modification is 

tested. 

Multiplication Algorithms 

like Karatsuba Multipliers 

need to be compared with the 

Reversible Multipliers and 

Vedic Methodology to 

Determine the most effective 

and efficient Multiplier. 

3 
Gary C.T. 

Chow, et.al. [15] 

In this paper, they describe a Montgomery 

multiplier that uses the faster O(N (log 3/ log 

2) Karatsuba algorithm. 

Karatsuba-Based 

Montgomery Multiplier is 

used for Cryptography 

Applications using long 

Integers. 

4 
Ashly George, 

et.al. [2] 

Montgomery modular multiplication's most 

recent method, which uses the KO algorithm 

and can use less hardware. The proposed 

design outperforms existing ones in terms of 

delay, area, and power, and there has been a 

notable improvement in latency and the trade-

off between area and performance. 

Montgomery Modular 

Multiplier using Karatsuba-

Ofman Algorithm is used in 

order to minimize the delay, 

area, and power. 

5 
Shankar R, et.al. 

[4] 

The area and the latency are minimized in the 

suggested design. Finally, the outcomes of the 

Vedic and Karatsuba multipliers are 

compared. 

The combination of 

Karatsuba-Vedic Multiplier 

helps to effective delay and 

the area of the circuit is thus 

reduced. 

VI. CONCLUSION 

This paper reviewed the most well-liked and most recent approaches to effective modular multiplication. In modular 

multiplication designs, the multipliers have much lower area-delay products. They deliver outstanding performance and energy 

efficiency as well. We described two methods for performing the modular multiplication A×B mod M: acquiring the product and 

then reducing it, or receiving the reduced product directly. Modular multiplication is implemented via many algorithms. 
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